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REPORT 1129

TRANSVERSE VIBRATIONS OF HOLLOW THIN-WALLED
CYLINDRICAL BEAMS'

By Bernarp Bupiansxy and Epwin T. Krussewskt

The variational principle, differential equations, and bound-
ary conditions considered appropriate to the analysis of trans-
verse vibrations of hollow thin-walled cylindrical beams are
shown. General solutions for the modes and frequencies of
cantilever and free-free cylindrical beams of arbitrary cross sec-
tion but of uniform thickness are given. The combined influence
of the secondary effects of transverse shear deformation, shear lag,
and longit dinal inertia is shown in the form of curves for
eylinders of rectangular cross section and uniform thickness.
The contribution of each of the secondary effects to the total
reduction in the actual frequency s also indicated.

The elementary theory of bending vibration is often in-
adequate for the accurate calculation of natural modes and
frequencies of hollow, thin-walled cylindrical beams. Such
secondary effects as transverse shear deformation, shear lag,
and longitudinal inertia, which are not considered in the
elementary theory of lateral oscillations, can have appre-
ciable influence, particularly on the higher modes and
frequencies of vibration. The effects of transverse shear
deformation and of rotary (rather than longitudinal) inertia
have been studied by many on the basis of the original inves~
tigations of Rayleigh (ref. 1) and Timoshenko (ref. 2).
Anderson and Houbolt (ref. 3) have presented a procedure
for including the effects of shear lag in the numerical calcu-
lation of modes and frequencies of box beams of rectangular
crose section. However, there does not appear to exist a
general solution for the vibration of hollow beams that in-
corporates the influence of all the secondary effects men-
tioned.

The purpose of the present report is threefold: First, to
exhibit the variational principle, differential equations, and
boundary conditions appropriate for the analysis of the
uncoupled bending vibration of hollow thin-walled cylindrical
beams; second, to give general solutions for cantilever and
free-free cylinders of arbitrary cross section but of uniform

SUMMARY of the secondary effects by means of numerical results for
hollow beams of rectangular cross section of various lengths,
widths, and depths.

SYMBOLS
A cross-sectiona) area
Aq Fourier coefficient
Ag effective shear-carrying srea
B, parameter defined in equation (30)
( constant
E modulus of elasticity
q shear modulus of elasticity
I moment of inertia
INTRODUCTION K geometrical parameter define:d in equation (29)

L length of cantilever beam, half-length of free-

free beam
N, parameter defined in cquation (3K)
T maximum kinetic cnergy
i’ maximum strain energy
4 half-depth of rectangular besm
b half-width of rectangular beam
Gma, by Fourier series coefficients
i Jj, m,n integers

4

kn frequency coefficient, u‘/ ‘;,{; 3
ke coefficient of shear rigidity. | I L “
kr: coefficient of rotary inertia, }‘J xli &
P perimeter of cross section
2 distance along periphery of cross section (see

fig. 1)
t wall thickness
u(z,8) longitudinal displacement in z-direction
w(r) vertical displacement in y-direction
x longitudinal coordinate
y vertical coordinate .
¥ y-coordinate of center of gravity of cross section
Yo shear strain

thickness; and finally, to show quantitatively the influence

§ Supersesdes NACA TN 202, “Transverss Vibrations of Hollow Thin-Walled Cylindrieal Beams' by Rernard Budiansky and Edwin T. Krussewski, 1063.
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€« longitudinal strain tudinal displacement u(z,s) of each point of the median line

’ inclination of normal with vertical (see fig. 1) of the beam wall.

A Lagrangian multiplier The longitudinal and shear strains are given in terms of

» mass of beam per unit length 4(z,4) and w(z) as

P mass density of beam

p longitudinal direct stress o= )

r shear stress or

“ natural frequency of beam and

we natural frequency of beam calculated from ele- _ou +(1“‘ sin 0 @
mentary beam theory Tn = Tdr

& Kronecker delta (1 if i=j; 0 if i »;)

v constraining relationship and the corresponding stresses becotne

BASIC EQUATIONS

Assumptions.—The problem to be considered is that of
the natural bending vibration of a thin-walled holiow
cylindrical beam whose cross section is symmetrical about at
least one axis (see fig. 1). The transverse vibration is sup-
posed to take place in the direction of this axis of symmetry
of the cross section 80 that no torsional oscillations are
induced.

In the present analysis, the following simplifications are
introduced:

(8) Changes in the size and shape of the cross section are
neglected.

(b) Stress and strain are assumed to be uniform across the
wall thickness.

(c) The small effect of circumferential strese upon longi-
tudinal strain is neglected.

In accordance with statements (a) and (b), the distortions
of the vibrating beam are completely described by the
vertiral displacement w(z) of a cross section and the longi-

D% S
WA
) \"

© | @
V 4 X
section. (b tions,
8 e (3} fan gonwention

Ficvas 1.—Coordinate systema and sign conventions.

. g Ou
o,=F or 3)
and

Y du .
Tn=0 (g:-&-:d{ sin 0) 4)

where 8 is the inclination of the normal with the vertical (see
fig. 1).

In clementary beam theory, where the effeets of all shear
distortion are neglected, the longitudinal distortion w(rx) is
related to the vertical displacement wir) by

dw
v )=@G-y
where ¥ is the y-coordinate of the center of gravity of the
cross section. In the present report, however, u(sx) is
allowed to be perfectly general, so that shear distortions (and
consequently the so-cajled shear-lag and (ransverse-shear-
deformation effeets) are fully taken into account.  Further-
more, hecause cross sections are not constrained to remain
plane, the inertia offect associated with motion in the
longitudinal direction is more properly designated as the
effect of longitudinal inertia than the effect of rotary inertia.
Variational principle and geometrical boundary condi-
tions.—The variational cquation to be written is appropriate
to beams whose ends are either fixed, simply supported, or
free. For some such beam vibrating in a natural mode, the
maximum strain energy is

Lo LEC L ouy 1 (L ou  dw . \!
1 2J; ?"(5,) tdult+2j; ?G(S;*'F}"“ O)Mhdz
(%)

where u(z,2) and w(z) are the amplitudes of displacement for
the particular mode considered. The maximum kinetic
energy is

T-= ] f L? plwlwids dr+ l«fL§ plwuds dz (8)
2)v 2Je

where w is the natural frequency of the mode under considera-
tion and p is the mass density of the beam. The second
term in equation (8) constitutes the contribution of longi-
tudinal inertia to the kinetic energy.

A natural mode of vibration must satisfy the variational




equation
s —-N=0 (7)

where the variation is taken independently with respect to
u(z,%) and w(z) and with the provision that both #(s.s) and
w(r) must satisfy the geometrical boundary conditions of
the problem; furthermore, #(s%) must be periodic in the
coordinate x with a period equal to the perimeter p.  The
geometrical boundary conditions are w=0 and u=0 at a
fixed end and only w=0 at a simply supported end. At a
free end no geometrical boundary conditions are imposed.
Differential equations and natural boundary conditions.
Equations (5), (), and (7) in conjunction with the usual

TRANSVERSE VIBRATIONS OF HOLLOW THIN-WALLED CYLINDRICAL BEAMS 3
Fixed end:
ww:= 0
u -0
Simply supported end:
w-
., Ou
kit 0
or
Free end:
N on  duw .
i )
g} ¥t (_Ox +4I.r st 8)sin 04dx - 1)
on
It -0
or

procedure of the caleulus of variations yvield the following
simultaneous integrodifferential equations for # and v

L, O'u Of[,,/0u, de . - .
Kt O.r’+0x [M(é—;-l— dp S0 0)]+ plw*u=-0 (R)

S, [ O°u . Fw .,
;(P G ( ox ;’ sin 0+",;‘,_. sin? 9) de b potw = 0 i)

m '—g)pl dx

and the boundary equations at each end of the beam are

where
(10)

S 1 { O _
?ht(&)au de=0 (n
Ep “t ( g—l:--i-"llt sin 0) sin 0 dx dw=:10 (S 4]

At a fixed end. both boundary equations (11) and (12) are
satisfied by virtue of the faet that the geometrical boundary
conditions require that both 3u and §u be zero. At a simply
supported end $r=0, but, since dulr.x) is perfectly arbitrary,
the variational process forees the equality

on _

Et . =0 13
or ¢
Finally, at a free end, since there are no geometrical con-
straints, both s and s are arbitrary and hence the varia-

tional process forees, in addition to equation (13), the

ecquality
> L qon  dw . . ~
?bl $+:l: sin o) sin 8 dx=0 (14)

Equations (1) and (14) constitute so-called “natural
boundary conditiona” because they are antomatieally satis-
fiedd an the result of & variational process. Equation (13) is
recognized as the condition of zero longitudingl direct stress
while equation (14) simply stipulates that the total vertical
shear force vanish.

Thus to summarize, the appropriate boundary conditions
required for the solution of equations (8) and (9) are

The integrodifferential equations (8) and (), whicl speeify
cquilibrium in the longitudinal and transverse directions
respectively, ean, of course, be written directly without
recatrse to the varintional principle.

GENERAL SOLUTIONS FOR CYLINDERS OF UNIFORM WALL
THICKNESS

The following exact solutions for evlinders of uniform wall
thickness are earried out by means of Fourier series in con-
junction with the application of the variational condition
(eq. (7). This procedure. which does not require explicit
consideration of the natural boundary  conditions, was
believed to be more expedient than a direct attack upon the
simultancous integrodifferential equations (8) and (9) and
all their associated boundary conditions,

Cantilever beam. -The geometrical boundary conditions,
for a cantilever beam, ax previously shown, are

wi):- uix)=-0

(see fig. 1), Appropriate assumptions for the displacements
w(r) and wir«) are

- nwr -
wr)y O+ D3 b, cos N (1)
n=1,35 -L
and
. . mwmr 2nuxx .
narx) - >, D g, SN 2, COS (16)
mal 5 on= )2 -l

The condition #(0.5) 0 is satisticd by each term of equa-

tion (16): the condition

4+

) b,= 0 an

L v’l..’I.f;
is introduced into the varigtional procedure by means of the
Lagrangian multiplier method.  “The choice of the pagticular
trigonometric functions used in the Fourier series (15) and
(16) was puided by consideration of the orthogonality
required for the simplification of expressions in the strain
energy.  The constant € ix needed in the expression for
te) in order that wtL) be unrestricted.

C ot i .-
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Using equations (15) and (16) in equations (5) and (6)
yiclds

U'=T=
%”;E‘(.?:?u.% Gma 2L°°s ";Y““s%")d dr+
PP e (B, 5 e i

. 3 nxr
qmo . b. 2L.m )ds dr—

.,J; 360 ol ("fr:ub.,cm 2L +(’) ds dr—

zf"? Py (M_ZT;M ._wl . An SIN - 2'; 2"”) ds dx (18)

To make equation (18) stationary and at the same time
satisfy the constraining relationship

¢=P+“§sb.=0 (19)

it is sufficient to set
sl —T—rp)=0 (20)

where the variation is with respect to the a's, b's, and €
considered as independent variables; here A is a Lagrangian
multiplier. This variational process results in the following
equations:

O(la:n g: '.2:2 mu:w A, m.+(‘( A.Lb'
wet b=~ 1% 20y
=0 (=135 .. @D
- (A 4]

W =11 4 J” P
- hl(2l L +aay, (,1( a,+

(1:»’{" Ab—w?pt %" (14-8o)a,,=0

[

(i=1,3,5,..)
(j=0.1.2, .. (22

!
9‘55?,-” A i =, -";(—n by wut LO—)
=0 (23)
where
A.=2 sin 9 sin 2nww d« (24)
3 P
A,:-._—gn sin? 0 dy (25)

With the use of the nondimensional parameters

3

k,*=‘;};- ot (26)

El -
k= AsGQI? (27)

I I
k“"=ﬁ¢L‘=AL’ (28)
187
K=, qp’ (29)
and
2

B(zai"—"k’u’knz (%) (80)

equations (21), (22), and (23) may be reduced to

= ine’ Lt L AR SR T
n%.? 4k82 Z; ‘lual-+2 (2) k32 bl .2 kl‘ bl

(_1)2 —.—k,,(’—L =0 (1=1,3,5,...) (31

EI—

(kszB|2+K2jz)(l+60,)a"+K2 L ‘Iﬂjb‘(——:—o] .; . )
T=1,d,0,...
J=0,1,2,..) 12

o - 3
2 2 (— l)!;l—-lbn+k32('+£};=0 (33)

&=1,3,5 1T

For j=0, equation (32) becomes

ksz ['t"— n’kn,z (%)j an=0 (!’=l,3, 5, e ) (34)

Equation (34) is not coupled to any of equations (31) to
(33). A given value of a, corresponds to the amplitude of

‘the ith mode of longitudinal oscillation, and if this value of

an is not equal to 0, then equation (34) simply gives the
frequency of this longitudinal mede. Consequently those
equations in equation (32) for values of j=0 are not asso-
ciated with transverse bending and so are ignored henceforth.
For the remaining values of j (that is, j#0) equation (32)
vields

~K P A
,,__:.f(,,,‘,‘LAM .3,5, ..
Y7 kB K 12,3,...) (35)
Substituting the expression for a,, in equation (35) into
equation (31) and solving for b, gives

(-1)’-

by=—

"t EI

N, (i=1,3,5, ...) (36)

e
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‘ where ;
t » K A N :
| O T N (17 i P @37
T8 kgt T kdBI+ K} 2"
=133
In the appendix this expression for N, is shown to be equivalent to
P _Uxtn, A, 1, ,
N33 B'~5¢ A Biks? Z( K’n’(ks’B"—%K‘n’) —gks (38)
o
Since the series in equation (38) is considerably more qmck\y convergent than that in equation (37), equation (38) should be
used in actual numerical calculations of N..
‘ Substitution of equation (36) into equation (33) and the constraining-relationship equation (19) gives the following two
; homogeneous equations in C and X:
i L _
‘ o 2 39a
Witk 3 (E) p et [+ S -0 2 N] (398)
L _ .
2 39b
[reee v E ] () B @
Finally the condition for a nontrivial solution for C and A gives the frequency equation
. = (2V 1 "H2
2 2 ol TR — 2 T
ky [l+k".§3g,(nr) N.] l+‘“..§ =N nx N,
=0 (40)
Lkt 3 (- 2! 2
l 5 -2.1 nw N » u-%,ﬁ N »
which the frequency parameter kp must satisfy. Since the | svmmetrically vibrating free-free beam is obtained from
terms of the infinite series which appear in the frequency | equation (39a) by setting A=0 and is
equation contain kp itself, the roots of equation (40) are most
. conveniently found by trial. Fortunately the infinite series Ic,,’[l + kg i ) ] “4n
: in equation (40) as well as the series in the definition of N, LEIER AN Y
‘ converge rapldly" so that only a few terms are needed to | Ap. particular root kp is found from equation (41), the
evaluate them with-sufficient accuracy. shape of the corresponding symmetrical free-free mode may
Once k» has been determined for a particular mode, the | be obtained from equations (36) (with A=0) and equations
corresponding mode shape can be found by letting C=1 and | (35).
solving either of equations (39) for X and then finally evaluat- Free-free beam—antisymmetrical modes.—Consider a
ing b, and a,, successively from equations (36) and (35). free-free beam of length 21 undergoing antisymmetrical
Free-free beam—symmetrical modes.—If the origin of a | vibrations. Explicit consideration need be given only to the
free-free Beam of length 21 is taken at the midspan (see fig. right half of the beam (sce fig. 1), and for this half-beam the
: 1), the form of the Fourier series assumed for w(r) and w(z,s) only geometrical boundary condit.ion that must be imposed
' when the beam is undergoing s symmetrical mode of vibra- | is that w(0)=0. The spanwise displacement u(0,%) is unre-
: tion may be exsctly the same as that assumed for the | strained by virtue of antisymmetry.
! cantilever beam of length L (see eqs. (15) and (16)). The Appropriate assumptions for the displacements w(z) and
: only difference in the ensuing calculations is that the con- | u(r,s) are then
straining condition (19) is not introduced. Consequently, it ) . nEr
- can be readily seen that the frequency equation for the w(t)_,..z_:;_ﬁb' s 277+01 “2)
)
}
i
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and

9
mwxr -n‘l"f (43)

The linear portion Cz of the expression for w(z) is needed in order to give the beam sufficient freedom at the tip (o= L).
The choice of the particular trigonometrie function in the serics expansion for #(r,x) was, as in the case of the cantilever
beam, guided by consideration of the orthogonality required for the simplification of the expressions in the strain energy.
The zeroeth term in the series for u(z,x) in the s-direction was omitted hecause it only leads to the frequency equation for

longitudinal oscillations.

Using equations (42) and (43) in equations (5) and (6) vields

3 Inx megs Qnws

- - Ly o 3 2 2 PN 3. X
P g v -~ _ M . r(;u e SR g =~ . <
117 ,2.’" ? [«,t(-g;.‘“ “Z%‘:‘ Qs pp 8i0 oy COS » ) thnll+2J" ? ('[m-zu:.m 2 dm, » Ccos " sin » +

™y N % ]
sin 0( b, ’Z,E cos "—;r£+()I dsfl.r—_l,J" q) plw”( . b, sin ’_i:;"-i»l'.r) dsidr—

n=2,4.6
1 "'(;; , = = mxr 2nws\?
! ‘( ) @ pa COS o8 ) dsdr 44)
200 0 re -‘-ST."?J WS3s " 2L P

The variation of equation (44) with respect to the a's,
b5, and € gives, after suitable simplification.

(B.zks:+K:j!)ﬂll‘Kzan "‘l;jbl 0 (=246, .. )
J=123, ... 5

I_K"j“' — "32“312""2 ( i )] ll»,—'Kz 2p': .‘l,j( e "

g=1.23... . b

2, 1 Lt inx? 11 /imyd -
20 k4, 4 T ,,s-.,(2 ) bit, ki bi—

nat23 K,
2, . -
(— .'" kfCL=0 (=246....) &7
1

S : Ii! nxdaa —-('L—-
u;ﬂ.tl k.<2 4"3 “ialom k32

P
kgt D5 =

(= Drb,

1
L =0 8
n=Zdn T 3 kn (48

From equation (45)

K ;";‘ A,ij

ay, JB}I&',"-&K{F b, (1==2,4,6....) (49)

(J=1.2.3... .
which. except for sign, ix the same expression as that ob-

tained for the cantilever and symmetrically vibrating free-
free beams (eq. (35)). From equation (46)

K’{;A,j

Qq ::B.,’It_g”-fk’j’ (« (_[= ], 2. 3, . .) (50)

Substitution of equation (49) into equation (47) gives

D 2
= —(— 1) '-i k{" CL (i=2,4.8.... B

where | is defined in equation (37 ).

Substitution of equations (30) and (31) Into equation (48)
and simplification gives as the frequency equation for the
antisvmmetrically vibrating free-free beam

s f2Vke L2, & A 17
ky [u@.,.;(,.,) Nt ke 2 g et )0

52)

After a particular value of by is found from equation (52),
the shape of the corresponding antisymmetrical free-free
mode may he obtained hy giving € the arbitrary value of
unity and caleulating the #'s and a's suceessively from
equations (51), (50), and (49).

Discussion of parsmeters. -The parameters entering in
the frequeney equations merit discussion.  The unknown
natural frequency is contained only in the frequeney co-

- L . [ET
efficient kg, which ix defined by the formula w- l'n\,y uL¥
and is in common use in beam-vibration analysis.  The
parameters kg and kg, are identical with the shear and
inertin parameters defined in referetice 4, which considers
the effect of only transverse shear and rotary inertin on
beam vibrations. The quantity 3¢ which appears in the
present definition of kg is actually the effective shear-carrying
area when plane sections are constrained to remain plane;
that is, when shear lag is neglected.  The remaining param-
eters appearing in the present derivation, namely, .1 .4,
K. and A, A, . . . are essentially shape parameters which
actually depend only on the contour of the cross seetion;
as shown in the appendix,

.‘l‘s = Z - A2

@
- n=1234

o, —

and
I " RN
K- = "
L I ..Z.m nt
and the .1,'s are simply the Fourier coeflicients of the
function sin 8, which is dependent only on the shape of the
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cross section. These shape parameters are related to shear-
lag eflects and their interaction with transverse shear
and longitudinal inertia.

The effect of longitudinal inertia is associated with the
parameter ky;. If the effect of longitudinal inertia is to be
neglected, it is sufficient to set kg equal 1o zero in the final
frequency equation. If kg, is equal to zero, By becomes in-
dependent of kp. Appreciable simplification in a trial-and-
error solution for the natural frequency then results since,
with B, independent of &5, the infinite summation contained
in N, is also independent of kg and need be caleulated only
once for any particular beam.  As is shown in the following
section, the effect of disregarding the influence of longitudinal
inertin may often be negligible.

Without presentation of details, it may be mentioned that
for the case of a circular evlinder, which has no shear lag,
all the 05 except o, vanish and the frequency equations
(40), (41). and (32) may be put into closed forms identical
to thoze given in reference 4. Again, if in the general fre-
quency equations kg is set equal to zero, the equations may
he put into closed forms equivalent to those of reference 4
where only rotary inertin is considered.

RESULTS FOR CYLINDRICAL BEAMS OF RECTANGULAR
CROSS SECTION

In order to show quantitatively the effects of shear lag,
transverse shear deformation, and longitudinal inertia on
the natural frequencies of hollow thin-walled evlindrical

1.0,

beams, numerical calculations have been performed for
evlinders of rectangular cross section oscillating as free-free
beams. The caleulations have been limited to symmetrical
modes of vibration, and consequently the frequency equation
(41) is applicable. For rectangular cross sections the quan-
tity Mg may be put into closed form as shown in the appendix,
and this elosed-form version of N¢ was used in the caleula-
tions. A value of K¢/ equal to 2.65 (appropriate for
aluminum alloys) was assumed.

The results of these calculations are shown in figures 2, 3,
and 4. In figure 2, the ratio of the natural frequeney w to
the natural frequeney wy obtained from elementary beam
theory is shown as a function of the plan-form aspect ratio
Lb for cross-sectional aspect ratios of 1.0, 3.6, and o,
The contribution of cach of the secondary effects to the total
reduction in the natural frequeney for the cross-sectional

b _—
aspeet ratios ‘—':f{,ﬁ and 1.0 can be seen in figures 3 and 4,

The

corresponds to the limiting caxe of a beam where the effects
of transverse shear deformation and longitudinal inertia are
negligible and therefore the reduction in natural frequency
is due entirely 1o shear Ing.

The dashed lines in figures 3 and 4 show the reduction in
frequencey due to the inclusion of the effect of only transverse
shiear deflormation as obtained from referenee 4.

The long- and short-dash lines are ealeulated from the
frequency  equation (41) with k4 - 0 and  consequently

. . . b
respectively. cross-sectional  aspeet  ratio of =

(a) First symmetrical mode.

(b) Second symmetrical mode,
Fiorre 2.—Change in the natural frequency of a symmetrically vibrating free-free exvlinder due to the inelusion of wcoudary effeeta.

L

(e) Third symmetrical mode,
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Effects included:
~—— ~—— «— Tronsverse shear (ref. 4)
——— - —— Tronsverse shear ond shegar fog
Tronsverse sheor, sheor lag, ond
2— longituding! inertia
I | | | | J
O2 6 10 14
Lo

Fiovre 3.~ Contribution of transverse shear deformation, shear lag,
and longitudinal inertia to the reduction in natural frequency for
b

—=3.6,

a

represent the reduetion in natural frequeney when both shear
lag and transverse shear deformation are taken into account.
Thus the hatched area between the dashed and the long- and
short-dash lines may be considered as showing the additional
reduction in natural frequeney when the influence of shear
lag is considered.  Finally, the solid lines are calenlated with
kar taken into account, and consequently the shaded area
shows the additional influence of longitudinal inertia in
reducing the frequency.

I . b .
Sxamination of figures 3 and 4 and the curves for L= in

figure 2 shows that the influence of shear lng increases as the
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3d symmetrical

E.fects inciuded

— —— —— Traonsverse shear (ret 4)
Tronsverse sheor ond sheor log
Tronsverse sheor, sheor log, ond

2% longitudina! inertio
I { 1 { |
02 6 10 i4

L/t

Fravre 4.- Contribition of transverse =hear deformation, shear lag,
and longitudingl inertin to the reduction in natural frequeney for

)
T=1.0.
a

cross-seetional aspeet ratio inereazes: whereas the influence
of transverse shewr and longitndinal inertin decreases with

inereasing eross-sectional aspeet ratio. Indeed, 1t appears

b . .
from the results for ';—::3.0‘» that for this aspect ratio the

offects of longitudinal inertin may already be considered
practically negligible.

A word of eaution concerning the interpretation of figures
3 and 4 may be in order. Sinee in 2ome eases the depth of
the hatehing inereases with ineveasing L bt might appear, an
first glanee, that the shear-lag effeer inereases with inerensing
plan-form aspeet ratio. However, if the additional effects
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of shear lag are considered on a percentage basis with the
dashed line as a base, it will be found that shear-lag effects
actually reduce in percentage with increasing L/b. A similsr
enterion should be used in judging the influence of longi-
tudinal inertia.

CONCLUDING REMARKS

The numerical calculations show that secondary effects
have appreciable influence on the natural frequencies of
rectangular box beams of uniform wall thickness. These
results constitute an indication of the probable madequacy of
elementary beam theory for the vibration analysis of actual

" aircraft structures of the monocoque and semimonocoqie

type and emphasize the need for practical calculation pro-
codures for such structurce that would take into account
transverse shear deformation, shear lag, and, when nocessary,
longitudina!l inertia. The general solutions presented for
cylinders of uniform thickness, as well as the numerical results
for rectangular box beams, should be useful in the assessment
of the accurucy of any procedure of this kind that may be
developed.

LANGLEY AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AEHRONAUTICS,
Lanauey Fiewp, Va., January 21, 1952

APPENDIX
TRANSFORMATION OF PARAMETERS

Expressions for As/A4, I, and K>.—If sin 6 is expanded into
a Fourier series
sin 6= i A, sin Znwy
=123

(AD

the Fourier coefficients A, are the same as those defined in
equation (24); that is,

2 2
A== § sin 8 sin <™ d« (A2)
P p

The effcctive shear area Ag (eq. (25)) can now be written
as a function of the Fourier series expansion for sin ¢ as

® 2
y S“ff ( A, sin ?”E“) ds (A3)
=123 P

With the use of the appropriate orthogonality conditions,
equation (A3) becomes, after the integration is performed,

_pt & 2=é 3 2
4s 2n§.2.3d' 2,.-123‘4'
or A
.,3=_l_ 2
A 2"_“34‘1.- (A9)

The moment of inertia I of a cylinder is defined as (see
fig. 1)

1= J;’ it ds— AT (A5)

where % is the y-distance to the center of gravity of the cross
section and is given hy

_ r Jtrls (A6)
="
But
L]
y=J; sin 0ds (A7)

or
_ . "ntu
y* A " 2urx ( = (A8)

and, consequently,
- & p
y_.-x‘%,]“‘. 2nx (Ag)

With the use of equations (AR) and (A9), the expression
for I in equation (A5) becomes
- 2
- .l P > A, (A10)

T 8w STy

With the series expansion for I in equation (A10), the param-
eter K2, as defined in equation (29), becomes

(A1)

Transformation of expression for N.—In equation (37)

N was defined as
S A A ntA,? 1

Ne=gig 10k K 45,25 koBe v K2 B (A1D)

The infinite series that appears in this expression converges
as A,2 and therefore is a relatively slowly converging series.
In order to increase its rate of convergence, the following
transformations are made.

By adding and subtracting A/K* inside the infinite
summation in equation (A12) and nsing equation (A4), the
equation simplifies to

2 A ALl 1

. 2 & .
A e 16 A’is Bl n-;.z‘:; kszlf,’-f I"zll2 2

ks  (A13)

By adding and subtracting A/K*? inside the infinite
summation in equation {A13) and using equation (A11), the
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expression for NV, can be transformed to

iint i A o 1
Ne=3z Bi=\g 4 B 30 konsESB T Ko~ 3 b A14)
The infinite series in equation (A14) converges as A.Y/n' and therefore is considerably more quickly convergent than the
series in equations (A12) and (A13), which converge as 4,2 and A4,*/n? respectively.
Closed form of N, for cylindrical beams of rectangular cross section.--For a cylindrical beam of rectangular eross
section, with dimensions as shown in figure 2, it is possible to write the expression for N, in a closed form. The param-
eters for such a cross section become

As=4ﬂl
A=4(@+bt=pl
Ad.=0 (n  even) (A15)
-3 cos 2nwb n  odd)
nx P

With equations (A15) the parameter .V, shown in equation (A12) becomes

, 2nwd
, it i - p 1,
~ .\;—8‘,8:"'4‘.”1 a --%.s “31\” . 2 ky (Al18)
KB
or
cos inxb
o SL SR = t = P 1
) "I ‘ '\‘—'sks‘t—_xksz d -gl.s k&z,82+"‘+l§..ﬂ k.!: Bt‘f'll’ —:-) B’ (Al7)
. i K" :

Each of the infinite summations in equation (A17) can now be written in closed form as shown in reference 5, and the
closed expression for N then becomes

. k 8a
. nh 722 B, (=5—1)
_."'s _ p|*™ 2K '(P 7k 1 1
AT ] BT A L (5"" A9
el ‘Gut
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